Light OJ – 1065 – Number Sequence

In this problem, the first confusing thing is that, where is the MOD value !! But if you carefully read the problem statement, the MOD value is there indirectly as input ! 😀
When we have to find the last 1 digit of a given integer n, then the last digit k is-
k=n%10
or, k=n%10^1
Similarly when we are to find the last 1 digit of a given integer n, then –
k=n%100
or, k=n%10^2
similarly for finding the last m digit of a given integer n, then –
or, k=n%10^m
And here, this 10^m is the MOD value !! 😀

#include <bits/stdc++.h>

#define pf                  printf
#define sf(a)               scanf("%d",&a)
#define sfl(a)              scanf("%lld",&a)
#define sff(a,b)            scanf("%d %d",&a,&b)
#define sffl(a,b)           scanf("%lld %lld",&a,&b)
#define sfff(a,b,c)         scanf("%d %d %d",&a,&b,&c)
#define sfffl(a,b,c)        scanf("%lld %lld %lld",&a,&b,&c)
#define sffff(a,b,c,d)      scanf("%d %d %d %d",&a,&b,&c,&d)
#define sffffl(a,b,c,d)     scanf("%lld %lld %lld %lld",&a,&b,&c,&d)
#define sfffff(a,b,c,d,e)   scanf("%d %d %d %d %d",&a,&b,&c,&d,&e)
#define sfffffl(a,b,c,d,e)  scanf("%lld %lld %lld %lld %lld",&a,&b,&c,&d,&e)
#define sfc(a)              scanf("%c",&a)
#define ms(a,b)             memset(a,b,sizeof(a))
#define pb(a)               push_back(a)
#define pbp(a,b)            push_back({a,b})
#define db                  double
#define ft                  float
#define ll                  long long
#define ull                 unsigned long long
#define ff                  first
#define ss                  second
#define sz(x)               x.size()
#define qu                  queue
#define pqu                 priority_queue
#define vc                  vector
#define vi                  vector<int>
#define vll                 vector<long long>
#define pii                 pair<int,int>
#define pis                 pair<int,string>
#define psi                 pair<string,int>
#define all(x)              x.begin(),x.end()
#define CIN                 ios_base::sync_with_stdio(0); cin.tie(0)
#define max3(a, b, c)       max(a, b) > max(b, c) ? max(a, b) : max(b, c)
#define min3(a, b, c)       min(a, b) < min(b, c) ? min(a, b) : min(b, c)
#define loop0(i,n)          for(int i=0;i<n;i++)
#define loop1(i,n)          for(int i=1;i<=n;i++)
#define loopcmp(i,n)        for(int i=1;i<n;i++)
#define looprev(i,n)        for(int i=n-1; i>=0; i--)
#define loopab(i,a,b)       for(int i=a;i<=b;i++)
#define loopba(i,b,a)       for(int i=b;i>=a;i--)
#define stlloop(x)          for(__typeof(x.begin()) it=x.begin();it!=x.end();it++)
#define gcd(a, b)           __gcd(a, b)
#define lcm(a, b)           ((a)*((b)/gcd(a,b)))
#define case1(z)            cout<<"Case "<<z<<": "
#define case2(z)            printf("Case %d: ",z)
#define PI                  acos(-1) //3.14159265358979323846264338328
#define valid(tx,ty)        tx>=0 && tx<row && ty>=0 && ty<col
#define intlim              2147483648
#define MAX                 1000000
#define inf                 100000000

/*------------------------------Graph Moves----------------------------*/
//const int fx[]={+1,-1,+0,+0};
//const int fy[]={+0,+0,+1,-1};
//const int fx[]={+0,+0,+1,-1,-1,+1,-1,+1};   // Kings Move
//const int fy[]={-1,+1,+0,+0,+1,+1,-1,-1};  // Kings Move
//const int fx[]={-2, -2, -1, -1,  1,  1,  2,  2};  // Knights Move
//const int fy[]={-1,  1, -2,  2, -2,  2, -1,  1}; // Knights Move
/*---------------------------------------------------------------------*/

using namespace std;

/*----------------------Matrix-----------------------*/

ll MOD;

struct matrix
{
    ll mat[2][2];
    int row,col;

    matrix()
    {
        ms(mat,0);
    }
    matrix(int a, int b)
    {
        row=a,col=b;
        ms(mat,0);
    }

    matrix operator*(const matrix &p) const
    {
        assert(col == p.row);
        matrix result;
        result.row = row;
        result.col = p.col;
        for (int i = 0; i < result.row; i++)
        {
            for (int j = 0; j < result.col; j++)
            {
                ll sum = 0;
                for (int k = 0; k <col;  k++)
                {
                    sum += ((mat[i][k]%MOD) * (p.mat[k][j]%MOD))%MOD;
                    sum%=MOD;
                }
                result.mat[i][j] = sum;
            }
        }
        return result;
    }
    matrix operator+ (const matrix &p) const
    {
        assert(row==p.row && col==p.col);
        matrix result;
        result.row=row;
        result.col=col;
        for(int i=0; i<result.row; i++)
        {
            for(int j=0; j<result.col; j++)
                result.mat[i][j]=((mat[i][j]%MOD)+(p.mat[i][j]%MOD))%MOD;;
        }
        return result;
    }

    matrix identity()
    {
        matrix result;
        result.row=row;
        result.col=col;
        for(int i=0; i<row; i++)
            result.mat[i][i]=1;
        return result;
    }

    matrix pow(ll pow)
    {
        matrix result=(*this);
        matrix ret=(*this).identity();
        while(pow)
        {
            if(pow % 2==1)
                ret=ret*result;
            result=result*result;
            pow/=2;
        }
        return ret;
    }

    void show()
    {
        printf("-----------------------------\n");
        for(int i=0; i<row; i++)
        {
            for(int j=0; j<col; j++)
                printf("%lld ",mat[i][j]);
            printf("\n");
        }
        printf("-----------------------------\n");
    }

};

ll power(int n,int p)
{
    if(p==0) return 1;
    ll r=1;
    for(int i=0;i<p;i++) r*=n;
    return r;
}

/*--------------------------Matrix End---------------------*/


int main()
{

    ///freopen("in.txt","r",stdin);
    ///freopen("out.txt","w",stdout);
    ll a,b,n,m,t;
    sfl(t);
    loop1(z,t)
    {
        sffffl(a,b,n,m);
        MOD=power(10,m);

        matrix base(2,2), multiplicand(2,1);

        base.mat[0][0]=base.mat[0][1]=base.mat[1][0]=1;
        multiplicand.mat[0][0]=b;
        multiplicand.mat[1][0]=a;

        base=base.pow(n-1);

        base=base*multiplicand;

        ll rs=base.mat[0][0];

        if(n==0) rs=a%MOD;
        else if(n==1) rs=b%MOD;
        case1(z);
        cout<<rs<<endl;
    }
    return 0;
}


Leave a comment